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1. Introduction

Linear algebra is the algebraic study of geometric objects which are flat, and
of the functions between them that preserve this flatness. Often we think of
flat as referring to two dimensional; here, we do not mean this. We mean an
idealized flatness in the dimension applicable to the object.

Around 300 B.C. in ancient Greece, Euclid set down the fundamental laws
of synthetic geometry. He starts with points and lines. Geometric figures such
as triangles and circles resided on an abstract notion of plane, which stretched
indefinitely in two dimensions; the Greeks also analysed solids such as regular
tetrahedra, which resided in space which stretched indefinitely in three dimen-
sions. Let us think of points, lines, planes, and spaces as flat things of dimension
0, 1, 2, and 3 respectively.

The ancient Greeks had very little algebra, so their mathematics was per-
formed using pictures; no coordinate system which gave positions to points was
used as an aid in their calculations. We may refer to the uncoordinatized spaces
of synthetic geometry as affine spaces. The word affine is used in mathematics
to indicate lack of a specific preferred origin.

The notion of coordinate system arose in the analytic geometry of Fermat and
Descartes after the European Renaissance (circa 1630). This technique connected
the algebra which was florishing at the time to the ancient Greek geometric
notions. We refer to coordinatized lines, planes, and spaces as cartesian spaces;
these are composed of ordered n-tuples of real numbers. The set of real numbers
is denoted by R, and the set of ordered n-tuples of real numbers is denoted
by Rn. Then R, R2, and R3 are sets whose geometry replicates Euclid’s lines,
planes, and spaces.

Since affine spaces and cartesian spaces have essentially the same geometric
properties, we refer to either of these types of spaces as euclidean spaces.

Just as coordinatizing affine space yields a powerful technique in the un-
derstanding of geometric objects, so geometric intuition and the theorems of
synthetic geometry aid in the analysis of sets of n-tuples of real numbers.

The concept of vector links the geometric world of Euclid to the more algebraic
world of Descartes. Vectors may be defined and manipulated entirely in the
geometric realm or entirely algebraically; ideally, we use the point of view that
best serves our purpose. Typically, this is to understand (geometrically) or to
compute (algebraically).
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2. Cartesian Space

An ordered n-tuple of real numbers is an list (x1, . . . , xn), where x1, . . . , xn

are real numbers, with the defining property that

(x1, . . . , xn) = (y1, . . . , yn) ⇔ x1 = y1, . . . , xn = yn.

We define n-dimensional cartesian space to be the set Rn of ordered n-tuples
of real numbers. The point (0, . . . , 0) is called the origin, and is labeled by O.
The numbers x1, . . . , xn are called the coordinates of the point (x1, . . . , xn). The
set of points of the form (0, . . . , 0, xi, 0, . . . , 0), where xi is in the ith slot, is known
as the ith coordinate axis.

In R2, we often use the standard variables x and y instead of x1 and x2. In
R3, we often use x, y, and z instead of x1, x2, and x3.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be points in Rn. The distance
between x and y is defined by

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2;

this formula, which is motivated by the Pythagorean Theorem, defines a function

d : Rn × Rn → R,

called the distance function.
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3. Loci

We may consider subsets of Rn such that the coordinates of the points in the
subset are related in some specified way. The common way of doing this is to
consider equations with the coordinates as variables. The set of all points which,
when their coordinates are plugged into the equation cause the equality to be
true, is called the solution set, or locus of the equation.

Consider the solution set in R3 of the equation z = 0. This is the set of points
of the form (x, y, 0). This set is called the xy-plane, and is immediately identified
with R2 in the natural way, via the correspondence (x, y, 0) ↔ (x, y). Similarly,
the solution sets of x = 0 and y = 0 are called the yz-plane and the xz-plane,
respectively. Together, these sets are called coordinate planes.

Example 1. Find the locus in R3 of the equation xyz = 0.

Solution. If xyz = 0, either x = 0, y = 0, or z = 0. Thus the solution set is
the union of the solution sets for these latter equation; that is, the locus of the
equation xyz = 0 is the union of the coordinate planes. �

Example 2. Find an equation whose solution set in R3 is the union of the
coordinate axes.

Solution. The x-axis is the set of points where y = 0 and z = 0. We can acheive
the x-axis as the solution set of y2 + z2 = 0. Thus we can see that the solution
set of

(x2 + y2)(x2 + z2)(y2 + z2) = 0
is the union of the coordinate axes. �

Now consider sets of points which simultaneously satisfy all of the equations
in a collection of equations. Such sets are merely the intersection of the solution
sets. For example, the solution set of {x = 0, y = 0} is the z-axis.

If one of the variables is missing from an equation, its locus in R3 is a curtain
(or cylinder), because the third variable can be anything.

Example 3. The locus in R2 of the equation y = 2x + 1 is a line, but in R3 it
is a plane. The locus in R3 of the equation z = sin y is a rippled “plane”; any
point of the form (x, y, sin y) is in the locus.
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4. Arrows

An arrow is a directed line segment; it is a line segment with one end desig-
nated as its tip and the other as its tail.

Parenthetically, we note that we could be more precise here and define an
arrow as a subset (A, x) of Rn ×R such that A is a line segment and x is one of
its endpoints; then call x the tail and the other endpoint the tip.

A nonzero arrow is determined by three attributes:
(1) Magnitude: its length;
(2) Direction: the line on which it sits, and its orientation on that line;
(3) Position: its tail.

A zero arrow is a point; it has zero magnitude and no direction.
The inverse arrow of an arrow v̂ is the arrow −v̂, defined to be the same line

segment with the tip and tail reversed.
Let P and Q be points in Rn and let P̂Q denote the arrow whose tail is P

and whose tip is Q; this is the arrow from P to Q. We may add two arrows if
the tip of the first equals to the tail of the second. Thus

P̂Q + Q̂R = P̂R.

The arrow P̂R forms the third side of a triangle.
We would like to be able to add any two arrows, but the dependence on the

positioning of the arrows in our definition prevents us. Thus we eliminate this
attribute of an arrow and retain the attributes of magnitude and direction; this
leads us to the concept of vector.
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5. Vectors

We say that two arrows are equivalent if they have the same magnitude and
direction, but not necessarily the same position. If v̂ is an arrow, define

~v = {ŵ | ŵ is an arrow which is equivalent to v̂};
such a set is called an equivalence class of arrows, or a vector. If ŵ is equivalent
to v̂, we say that ŵ represents ~v. Technically, ŵ represents ~v means that ŵ ∈ ~v.
Since any arrow is equivalent to itself, we see that in particular v̂ represents ~v.

If P is the tail and Q is the tip of an arrow, we write ~PQ for the vector
represented by the arrow P̂Q.

We can show that ŵ ∈ ~v if and only if ~w = ~v. Thus a vector is determined by
two attributes:

(1) Magnitude;
(2) Direction.

All zero arrows are equivalent; thus there is a unique zero vector.
The inverse vector of a vector ~v is the vector −~v, defined to be the vector

represented by any arrow −v̂, where v̂ represents ~v.
For any vector ~v and any point P ∈ Rn, there is a unique arrow ŵ such that

ŵ ∈ ~v and the tail of ŵ is equal to P . It is now possible to add the vectors ~PQ

and ~RS; let Q̂T be the unique arrow with the same magnitude and direction as
R̂S, and define the geometric sum by ~PQ + ~RS = ~PT . Note that − ~PQ = ~QP

and that ~PQ + ~QP is the point P ; thus adding the inverse vector produces the
zero vector.

If P = O is the origin, there is a unique arrow representing ~v whose tail is
O. We refer to this arrow as the standard position of the vector v. The tip
of the vector v in standard position is a point in Rn; this creates a one to one
correspondence between vectors (which are equivalence classes of arrows) and
points in Rn. If ~v is a vector, we define the coordinates of ~v to be the coordinates
of the corresponding point; that is, the coordinates of ~v are the coordinates of
the tip of ~v when its tail is placed at the origin.

This correspondence allows us to switch between the concepts of points in
n-space and vectors in n-space at will, blurring the distinction. We consider
points in Rn and vectors in Rn as interchangeable; the point of view we adopt
depends on the situation. Thus we may use the notation Rn to denote the set
of all vectors in n-space.

We no longer put arrows over the vectors; we will specify in each case what
set an element is coming from (in particular, whether it comes from R or from
Rn). We may denote the zero vector (the origin) either by O, or by 0 (when it
cannot be confused with the zero scalar).
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6. Vector Addition and Scalar Multiplication

Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vectors in Rn. We
define the vector sum of these vectors algebraically by adding the corresponding
coordinates:

v + w = (v1 + w1, v2 + w2, . . . , vn + wn).
Let v = (v1, v2, . . . , vn) and let a be a real number; we often refer to real

numbers as scalars. We define the scalar multiplication of a times v algebraically
by multiplying each coordinate of v by a:

a · v = (av1, av2, . . . , avn).

The dot is usually omitted from the notation, so a · v is written as av.

Primary Properties of Vector Addition and Scalar Multiplication
Let x, y, z ∈ Rn and let a, b ∈ R. Then

(a) x + y = y + x; (Commutativity)
(b) (x + y) + z = x + (y + z); (Associativity)
(c) x + 0 = x; (Existence of an Additive Identity)
(d) x + (−x) = 0; (Existence of Additive Inverses)
(e) 1 · x = x; (Scalar Identity)
(f) (ab)x = a(bx); (Scalar Associativity)
(g) a(x + y) = ax + ay; (Distributivity of Scalar Mult over Vector Add)
(h) (a + b)x = ax + bx. (Distributivity of Scalar Mult over Scalar Add)

Remark. These properties are derived directly from the definition. �

Secondary Properties of Vector Addition and Scalar Multiplication
Let x, y, z ∈ Rn and let a, b ∈ R. Let O ∈ Rn be the origin. Then

(a) 0 · x = O;
(b) a ·O = O;
(c) −1 · x = −x;
(d) (−a)x = −(ax).

Remark. These properties may be derived from the primary properties. �

Geometrically, the vector sum v + w corresponds to sliding an arrow repre-
senting w over so that its tail is equal to the tip of v. That is, there is a unique
arrow which represents the vector w whose tail equals the tip of the vector v.
We interpret v + w geometrically to be the tip of this arrow. It is the endpoint
of the diagonal of the parallelogram determined by v and w.

Geometrically, the scalar multiple av is interpreted as the vector whose di-
rection is that of v but whose length is |a||v|. If a < 0, then the orientation of
av is opposite the orientation of v. Thus multiplying a vector by negative one
reverses its orientation, and produces its negative.

The vector which proceeds from the tip of v to the tip of w is w − v. This is
clear, since v + (w − v) = w.
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7. Norm of a Vector

The norm of a vector is its magnitude; if we pick an arrow representing the
vector whose tail is at the origin, then its norm is the distance between its tip
and the origin. Thus if x = (x1, . . . , xn), the norm of x is denoted |x| and is
given by

|x| =

√√√√ n∑
i=1

x2
i .

A unit vector is a vector whose norm is 1. In some sense, a unit vector
represents pure direction (without length); if u is a unit vector and a is a scalar,
then au is a vector in the direction of u with norm a.

Let v be any nonzero vector. We obtain a unit vector in the direction of v
simply by dividing by the length of v. Thus the unitization of v is

u =
1
|v|

v.
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8. Dot Product

Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vectors in Rn. We define
the dot product of v and w by the rule

v · w = v1w1 + v2w2 + · · ·+ vnwn.

There is no ambiguity caused by using a dot for scalar multiplication and
vector dot product, because their definitions agree in the only case where there
is overlap (namely, if n = 1). We usually drop the dot from the notation for
scalar multiplication anyway (unless the vector is a known constant). Note that
v + w ∈ Rn and av ∈ Rn, but v · w ∈ R.

Properties of Dot Product and Norm
Let x, y, z ∈ Rn and a ∈ R. Then

(a) x · x = |x|2;
(b) x · y = y · x; (Commutativity)
(c) x · (y + z) = (x · y) + (x · z); (Distributivity over Vector Addition)
(d) a(x · y) = (ax) · y = x · (ay);
(e) x ·O = 0;
(f) |ax| = |a||x|.

Remark. These properties are proved directly from the algebraic definitions. �

Remark. Properties (a) through (f) are derived directly from the algebraic def-
initions. Properties (c) and (d) together are called linearity of dot product. �

The geometric interpretation of dot product is as useful as it is unanticipated
from the definition. To understand it, we first need to understand the concept
of projection.

Given a line L in Rn and a point P in Rn not on the line, there is a unique
point Q on the line which is closest to the point. The lines between L and PQ
are perpendicular. The point Q is the projection of P onto L.

Let v and w be vectors in Rn. There is a unique point on the line through
w which is the projection of the tip of v onto this line. The vector whose tail is
the origin and whose tip is this projected point is called the vector projection of
v onto w. The norm of this vector projection is the distance from the origin to
this projected point and is called the scalar projection of v onto w. Let projw(v)
denote the scalar projection of v onto w.

Drop a perpendicular from the tip of v onto the line through w to obtain
a right triangle. If θ is the angle between the vectors v and w, we see that
projw(v) = |v| cos θ.
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Proposition 1. Let v, w ∈ Rn and let θ be the angle between v and w. Then

v · w = |v||w| cos θ.

Proof. To prove this result, we use the Law of Cosines, a generalization of the
Pythagorean Theorem. The Law of Cosines states that for any triangle whose
sides have lengths a, b, and c and whose angle opposite the side of length c has
angle θ, then c2 = a2 + b2 − 2ab cos θ.

To use this, consider the triangle whose vertices are the tips of v and w. The
vector from v to w is w − v, so the lengths of the sides of this triangle are |v|,
|w|, and |w − v|. The Law of Cosines now gives us

|w − v|2 = |v|2 + |w|2 − 2|v||w| cos θ.

Since the square of the modulus of a vector is its dot product with itself, we have

(w − v) · (w − v) = v · v + w · w − 2|v||w| cos θ.

By distributativity of dot product over vector addition and other properties,

w · w − 2v · w + v · v = v · v + w · w − 2|v||w| cos θ.

Cancelling like terms on both sides and then dividing by −2 yields

v · w = |v||w| cos θ.

�

Corollary 1. Let v, w ∈ Rn and let θ be the angle between v and w. Then

v · w = |w|projw(v).

If u is of unit length, then
v · u = projw(v).

We say that v is orthogonal (or perpendicular) to w, and write v ⊥ w, if the
angle θ between them is a right angle. This happens exactly when the cosine of
this angle is zero: cos θ = 0. Also, by the definition of projection, this happens
exactly when the vector projection of v onto w is the zero vector.

Dot product gives us a test for perpendicularity:

v ⊥ w ⇔ v · w = 0.

Note that from this point of view, any vector is perpendicular to the zero vector.
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9. Lines in Rn

A line in Rn is determined by a point Q on the line and a direction vector
v; the points on the line are those we encounter if we proceed from Q in the
direction of v. Each such point is of the form Q + tv, where we think of the real
number t as being the time spent traveling in that direction. Thus the line is
the set of points P of the form

P = tv + Q.

Note that the distance between P and Q is equal to |t||v|; we may think of |v|
as the velocity with which we proceed away from the point Q.

The equation P = tv + Q is a parametric equation; here we have a parameter
t which is allowed to range throughout the entire set of real numbers. The line
itself is not the locus of this equation; it is the set

L = {P ∈ Rn | P = tv + Q for some t ∈ R}.
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10. Planes in R3

A plane in R3 is determined by a point Q on the plane and a normal vector
n; here, “normal” means “perpendicular to the plane”. That is, given a plane
(in R3), there is a unique direction which is perpendicular to the plane. If P
is another point on the plane, then the vector from Q to P lies on the plane.
This vector is P −Q, which is perpendicular to the normal vector n, so its dot
product with n is zero. This gives the vector equation of the plane to be

(P −Q) · n = 0.

By properties of dot product, we may rewrite this as

P · n = Q · n.

The plane is the locus of this equation; thus it is the set

L = {P ∈ Rn | (P −Q) · n = 0}.
Suppose Q = (x0, y0, z0) is the fixed point, n = (n1, n2, n3) is the normal

vector and P = (x, y, z) is the variable point. In this case, our equation becomes

(x, y, z) · (n1, n2, n3) = (x0, y0, z0) · (n1, n2, n3),

or
n1x + n2y + n3z = n1x0 + n2y0 + n3z0.

We know that three points in R3 determine a plane, which leads us to an
example.

Example 4. Let Q = (0, 1, 4), R = (1, 0, 3), and S = (−2, 6, 0) be three points
in R3. Find the equation of the plane which passes through these points.

Solution. Let v = R − Q = (1,−1,−1) and w = S − Q = (−2, 5,−4). There is
an entire plane’s worth of vectors which are perpendicular to v, and a different
plane’s worth of vectors which are perpendicular to w; there intersection is a
line which is perpendicular to both. Let n = (n1, n2, n3) be a direction vector
for this line. Then n is a normal vector for the plane we seek. Note that any
nonzero vector along this line is a normal vector, so we anticipate some choice
in our eventual solution.

Now n is perpendicular to both v and w, so

v · n = 0 and w · n = 0.

Multiplying this out and thinking of the ni’s as variables, this gives two equations
in three variables:

n1 − n2 − n3 = 0
−2n1 + 5n2 − 4n3 = 0

Multiply the first equation by 2, add the resulting equations, and simplify to see
that n2 = 2n3. Plug this into the first equation and simplify to get n1 = 3n3.

Thus any vector of the form n = (3n3, 2n3, n3) is a normal vector. Set n3 = 1
to get n = (3, 2, 1). The equation of the plane in P · n = Q · n, or

3x + 2y + z = 6.

�
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11. Hyperplanes in Rn

The construction of a plane in R3 is easily generalized to any dimension. For
example, the set of all points in R2 perpendicular to a given vector is a line.

Example 5. Find the line in R2 passing through the point Q = (1, 5) in the
direction of the vector v = (3, 7).

Solution. We seek an equation for which this line is the locus. Although there
are others ways to do this, we demonstrate that the above idea suffices.

First we want a vector n = (n1, n2) which is perpendicular to the line. Then
v ⊥ n, so v · n = 0, i.e., 3n1 + 7n2 = 0. Let n = (7,−3), which is solution to the
above equation.

The line is given by (P − Q) · n = 0. If P = (x, y) and Q = (1, 5), we have
7x− 3y = 7− 35 = −28. So 7x− 3y = −28 is an equation of the line. �

Let us define a hyperplane in Rn to be the set of all points perpendicular to
a given vector x and passing through a given point Q. If H ⊂ Rn is such a
hyperplane, then

H = {P ∈ Rn | (P −Q) · x = 0}.
A hyperplane in R is a point; a hyperplane in R2 is a line, and a hyperplane in R3

is a plane in the standard sense. In general, a hyperplane in Rn is geometrically
identical to a copy of Rn−1 embedded in Rn.

There are two types of hyperplanes; those that pass through the origin and
those that do not. We will see that hyperplanes which pass through the origin
have the additional property that they are “closed” under vector addition and
scalar multiplication. In this way, they are both geometrically and algebraically
identical to a copy of Rn−1.
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12. Linear Combinations and Spans

Let A = {v1, . . . , vr} ⊂ Rn be a finite set of vectors from Rn. A linear
combination of the vectors in A is an element of Rn of the form

a1v1 + · · ·+ arvr,

where a1, . . . , ar ∈ R. We may also call this a linear combination from A. We do
not place any restrictions in our definitions regarding the relative size of r and
n; however, this relative size will play a role in what we will be able to conclude.

The span of A is the subset span(A) ⊂ Rn defined by

span(A) = {w ∈ Rn | w is a linear combination from A}.
Let X ⊂ Rn be an arbitrary subset, not necessarily finite. Then define the

span of X to be the union of all spans of finite subsets of X:

span(X) = {a1v1 + · · ·+ arvr | ai ∈ R and vi ∈ X for i = 1, . . . , r}.
The span of X is the set of all finite linear combinations of vectors in X; we do
not have a definition for a linear combination of an infinite number of vectors
(one could try to use limits here to get a definition in some cases).

Proposition 2. Let A = {v1, . . . , vr} ⊂ Rn. Then
(a) A ⊂ span(A);
(b) B ⊂ A ⇒ span(B) ⊂ span(A);
(c) X ⊂ span(A) ⇒ span(X) ⊂ span(A).

Proof. Since the vector vi is a linear combination of the vectors in A simply by
taking ai = 1 and aj = 0 for i 6= j, we get (a).

In light of this, (b) follows from (c), so we prove (c). Suppose that X ⊂
span(A). Let B = {w1, . . . , ws} ⊂ X be a finite subset. It suffices to show that
span(B) ⊂ span(A). Pick an arbitrary vector w ∈ span(B); it suffices to show
that w ∈ span(A).

Now w =
∑s

j=1 bjwj for some real numbers bj . Also, each vector wj is a linear
combination of the vi, that is, wj =

∑r
i=1 aijvi for some real numbers aij . Thus

w =
s∑

j=1

bjwj =
s∑

j=1

bj(
r∑

i=1

aijvi) =
s∑

j=1

r∑
i=1

bjaijvi =
r∑

i=1

(
s∑

j=1

aijbj)vi

We have expressed w as a linear combination of the vis, thus w ∈ span(A). �

Proposition 3. Let A = {v1, . . . , vr} ⊂ Rn. Let x, y ∈ span(A) and let L be the
line through x and y. Then L ⊂ span(A).

Exercise Hint. Pick an arbitrary point on the line. It suffices to show that this
point is in span(A). First show that the point is in span{x, y}. �

Remark 1. The two propositions above remain true if A is replaced by an
infinite subset of Rn.
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13. Subspaces

A subset W ⊂ Rn is called a subspace of Rn if
(S0) W is nonempty;
(S1) x, y ∈ W ⇒ x + y ∈ W ;
(S2) a ∈ R, x ∈ X ⇒ ax ∈ W .

If W is a subspace of Rn, this fact is denoted by W ≤ Rn.
Property (S1) says that W is closed under vector addition, and property

(S2) says that W is closed under scalar multiplication. In the presence of these
properties, property (S0) is equivalent to the assertion that the origin is an
element of W . For if 0 ∈ W , then W is certainly nonempty; on the other hand,
suppose that W is nonempty and let w ∈ W . Then −1w = −w ∈ W by property
(S2), so 0 = w + (−w) ∈ W by property (S1).

Example 6. The set {0}, which contains only the origin, is a subspace, called
the trivial subspace. Also, Rn is a subspace of itself.

Example 7. Let v, w ∈ R3 and let W = span(v, w) = {av + bw | a, b ∈ R}.
Then W is a subspace of R3. To see this, first note that 0 = 0v + 0w ∈ W , so
(S0) is satisfied. Next select arbitrary vectors a1v + b1w and a2v + b2w from V
and note that their sum is (a1 +a2)v +(b1 + b2)w, which is also in W ; thus (S1)
is satisfied. Moreover, if av + bw ∈ W and c ∈ R, we have cav + cbw ∈ W ; thus
(S2) is satisfied.

The subspace W is a plane through the origin in R3.

Proposition 4. Let A ⊂ Rn. Then span(A) ≤ Rn.

Reason. Sums and scalar products of linear combinations from A are linear com-
binations from A. �

Proposition 5. Let X ⊂ Rn. Then X ≤ Rn if and only if span(X) = X.

Reason. Suppose X is a subspace of Rn. We wish to show that span(X) = X.
Since we already know that X ⊂ span(X), it suffices to show that span(X) ⊂ X.
Let w ∈ span(X). It suffices to show that w ∈ X. Now w is a finite linear
combination of vectors from X. Since X is a subspace, it is closed under addition
and scalar multiplication, so all sums and scalar multiples of vectors in X are also
in X. Thus linear combinations of vectors from X are also in X; thus w ∈ X.

Suppose that span(X) = X. Let x, y ∈ X and a ∈ R. Then x + y is a linear
combination of vectors from X, so x + y ∈ span(X) = X. Also ax is a linear
combination of vectors from X, so ax ∈ span(X) = X. Thus X is closed under
vector addition and scalar multiplication, i.e., X is a subspace of Rn. �
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14. Bases

Let W be a subspace of Rn. A basis for W is a subset B ⊂ W such that
(B1) span(B) = W ;
(B2) C ( B ⇒ span(C) ( span(B).
Together, these properties state that B is a minimal spanning set. Later,

we will show that every subspace has a basis, and that all bases have the same
number of elements; we will call this number the dimension of the subspace.

Example 8. Let v = (1, 1) and w = (1,−1). Then {v, w} is a basis for R2.
Indeed, let p = (x, y) ∈ R2 be an arbitrary point; we wish to write p as a linear
combination of v and w. This means that we wish to find real numbers a, b ∈ R
such that p = av + bw, or (x, y) = (a, a) + (b,−b). This leads to a pair of
equations x = a + b and y = a − b. Manipulate these to get a = 1

2 (x + y) and
b = 1

2 (x− y). We have found a and b in terms of the coordinates of the point p,
which shows that p ∈ span(v, w).

Neither v nor w span R2 by themselves, so {v, w} is a minimal spanning set,
so it is a basis.

Proposition 6. Let B ⊂ Rn. Then B is a basis for Rn if and only if every
vector in Rn can be written as a linear combination from B in a unique way.

Remark. We wish to show that the “minimality” property can be exchanged
for the “uniqueness” property. We will show this later; think about why it is
true. �

The ith standard basis vector for Rn is denoted ei and is defined to be the
vector with 1 in the ith coordinate and zero in every other coordinate. The set
of all such vectors is called the standard basis for Rn.

For example, the standard basis for R4 is

{e1, e2, e3, e4} = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
This is indeed a basis; for example, we can write

(1,−3, π,
√

2) = e1 − 3e2 + πe3 +
√

2e4.
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15. Linear Transformations

A linear transformation from Rn to Rm is a function

T : Rn → Rm

which satisfies
(L1) T (v + w) = T (v) + T (w) for all v, w ∈ Rn;
(L2) T (av) = aT (v) for all v ∈ Rn and a ∈ R.

Example 9. The function Pi : Rn → R given by T (x1, . . . , xn) = xi is linear;
this is called projection onto the ith coordinate.

Example 10. Let a, b ∈ R be arbitrary constants. The function T : R2 → R1

given by T (x, y) = ax + by is linear. To see this, let v = (x1, y1), (x2, y2) ∈ R2.
Then v + w = (x1 + x2, y1 + y2), so

T (v + w) = T ((x1 + x2, y1 + y2)

= a(x1 + x2) + b(y1 + y2)

= (ax1 + by1) + (ax2 + by2)

= T (v) + T (w).

Now let v = (x, y) ∈ R2 and c ∈ R; then

T (cv) = T (cx, cy) = acx + acy = c(ax + by) = cT (v).

Thus T is linear.

Example 11. Fix an arbitrary vector w ∈ Rn. Then the function T : Rn → R
given by T (v) = v · w is linear.

Proposition 7. Let T : Rn → Rm be a linear transformation. Then
(a) T (0) = 0;
(b) T (span(A)) = span(T (A)), where A ⊂ Rn.

Proof. Let On denote the origin in Rn and let Om denote the origin in Rm, to
distinguish them from the 0 scalar. Then T (On) = T (0 ·On) = 0 · T (On) = Om,
since 0 times anything in Rm is Om.

Let A ⊂ Rn; for simplicity assume that A = {v1, . . . , vr} is a finite set. Then

T (span(A)) = T ({
r∑

i=1

aivi | ai ∈ R}) by definition of span

= {T (
r∑

i=1

aivi) | ai ∈ R} by definition of image

= {
r∑

i=1

aiT (vi) | ai ∈ R} since T is linear

= span({T (v1), . . . , T (vr)}) by definition of span

= span(T (A)) by definition of image

�
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Proposition 8. A linear transformation is completely determined by its effect
on the standard basis.

Proof. This means that if we know the effect of a linear transformation T : Rn →
Rm on the standard basis, then we know its effect on all of Rn. This follows
from the fact that if v ∈ Rn, then v = (a1, . . . , an) for some real numbers ai ∈ R.
This is the same as saying that v =

∑n
i=1 aiei; but since T is linear, we have

T (v) = T (
n∑

i=1

aiei)

=
n∑

i=1

T (aiei)

=
n∑

i=1

aiT (ei).

�

Remark 2. The above argument shows that every vector in the image of a
linear transformation is a linear combination of the images of the basis vectors.

Remark 3. The above argument proceeds without change if we replace the
standard basis by any spanning set.

Proposition 9. Let w1, . . . , wn ∈ Rm. Then there exists a unique linear trans-
formation T : Rn → Rm such that T (ei) = wi for i = 1, . . . , n.

Proof. Define T by T (v) =
∑n

i=1 aiT (ei), where v = (a1, . . . , an). This is linear
and sends ei to the vector wi. It is unique by the previous proposition. �

Remark 4. The above argument proceeds without change if we replace the
standard basis by any finite spanning set.

Example 12. Define a linear transformation T : R3 → R3 by T (e1) = (1, 2, 0),
T (e2) = (0, 1, 2), and T (e3) = (2, 0, 1). Let v = (1, 2, 3). What is T (v)?

Solution. Note that v = e1 + 2e2 + 3e3. Thus

T (v) = T (e1) + 2T (e2) + 3T (e3) = (1, 2, 0) + (0, 2, 4) + (6, 0, 3) = (1, 4, 7).

�
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16. Images and Preimages under Linear Transformations

Let T : Rn → Rm be a linear transformation and let V be a subspace of Rn.
The image of V under T is denoted by T (V ) and is defined to be the set of all
vectors in Rm which are “hit” by an element of V under the transformation T :

T (V ) = {w ∈ Rm | w = T (v) for some v ∈ V }.
Then T (V ) is actually a subspace of Rm.

Proposition 10. Let T : Rn → Rm be a linear transformation and let V ≤ Rn.
Then T (V ) ≤ Rm.

Proof. In order to show that something is a subspace, we need to verify properties
(S0), (S1), and (S2).

(S0) Since 0 ∈ V and T (0) = 0, we see that 0 ∈ T (V ).
(S1) Let w1, w2 ∈ T (V ). Then there exist vectors v1, v2 ∈ V such that

w1 = T (v1) and w2 = T (v2). We have w1 + w2 = T (v1) + T (v2) = T (v1 + v2).
Since V is a subspace, v1 + v2 ∈ V ; thus w1 + w2 ∈ T (U).

(S2) Let w ∈ T (V ) and a ∈ R. Then there exists v ∈ V such that T (v) = w.
We have aw = aT (v) = T (av). Since V is a subspace, av ∈ U ; thus aw ∈
T (V ). �

Example 13. Let V be the subspace of R2 spanned by the vector v = (1, 1); that
is, V = {(t, t) | t ∈ R} is a line through the origin of slope 1. Let T : R2 → R2

be given by T (x, y) = (x + y, x− y); this is linear. Then T (V ) is the subspace of
R2 spanned by T (v) = (1 + 1, 1 − 1) = (2, 0); that is, T (V ) is the x-axis. Thus
T rotates V by −π

6 degrees and expands it by a factor of
√

2. In fact, this is the
effect of T on the entire plane.

Let T : Rn → Rm be a linear transformation and let W be a subspace of Rm.
The preimage of W under T is denoted by T−1(W ) and is defined to be the set
of all vectors in Rn which “hit” elements in W under the transformation T :

T−1(W ) = {v ∈ Rn | T (v) = w for some w ∈ W}.
Then T−1(W ) is actually a subspace of Rn.

Proposition 11. Let T : Rn → Rm be a linear transformation and let W ≤ Rm.
Then T−1(W ) ≤ Rn.

Proof. We verify properties (S0), (S1), and (S2).
(S0) Since 0 ∈ W and T (0) = 0, we see that 0 ∈ T−1(W ).
(S1) Let v1, v2 ∈ T−1(W ); then T (v1) and T (v2) are elements of W . Now

T (v1 + v2) = T (v1) + T (v2), and since W is a subspace, this sum is also in W .
Thus v1 + v2 ∈ T−1(W ).

(S2) Let v ∈ T−1(W ) and a ∈ R. Then T (av) = aT (v); since T (v) is in W
and W is a subspace, aT (v) ∈ W . Thus av ∈ T−1(W ). �

Example 14. Let T : R3 → R3 be the linear transformation given by T (x, y) =
(x− y, y − z, z − x). Let W = {0} ⊂ Rm be the trivial subspace of Rm; here, 0
means the point (0, 0, 0). The preimage is given by solving the equations

x− y = 0; y − z = 0; z − x = 0.

Any point of the form (t, t, t), where t ∈ R, is a solution. Thus T−1(W ) is the
line in R3 spanned by the vector (1, 1, 1).



19

17. Kernels of Linear Transformations

The kernel of a linear transformation T : Rn → Rm is the set of all vectors in
the domain Rn which are sent to the origin in the range Rm. We denote this set
by ker(T ):

ker(T ) = {v ∈ Rn | T (v) = 0}.

Proposition 12. Let T : Rn → Rm be a linear transformation.
Then ker(T ) ≤ Rn.

Proof. We verify properties (S0), (S1), and (S2).
(S0) We know that T (0) = 0; thus 0 ∈ ker(T ).
(S1) Let v1, v2 ∈ ker(T ); this means that T (v1) = T (v2) = 0. Then T (v1 +

v2) = T (v1) + T (v2) = 0 + 0 = 0, so v1 + v2 ∈ ker(T ).
(S2) Let v ∈ ker(T ) and a ∈ R. Then T (av) = aT (v) = a · 0 = 0; thus

av ∈ ker(T ). �

Alternate Proof. Since W = {0} is a subspace of Rm and ker(T ) is the preimage
of W , we know that W is a subspace by a Proposition 11. �

Example 15. Let T : R3 → R3 be given by T (x, y, z) = (x, y, 0). This is
projection onto the xy-plane, and is linear. The kernel is the z-axis.

Proposition 13. Let T : Rn → Rm be a linear transformation.
Then ker(T ) = {0} if and only if T is injective.

Proof. We must show both sides of the implication. Recall that T is injective
means that whenever T (v1) = T (v2), we must have v1 = v2.

(⇒) Suppose that ker(T ) = {0}. Let v1, v2 ∈ Rn such that T (v1) = T (v2);
we wish to show that v1 = v2. Then T (v1) − T (v2) = 0, so T (v1 − v2) = 0, so
v1−v2 ∈ ker(T ). Since ker(T ) = {0}, we have v1−v2 = 0, so v1 = v2. Therefore
T is injective.

(⇐) Suppose that T is injective. Let v ∈ ker(T ); we wish to show that v = 0.
But T (v) = 0 and T (0) = 0, and since T is injective, we must have v = 0. �

If W ≤ Rn is a subspace and v ∈ Rn, the translate of W by v is the set

v + W = {v + w | w ∈ W}.

Proposition 14. Let T : Rn → Rm be a linear transformation. Let w ∈ Rm be
in the image of T and let v ∈ Rn such that T (v) = w. Then

T−1(w) = v + ker(T ).

Proof. To show that two sets are equal, we show that each is contained in the
other.

(⊂) Let x ∈ T−1(w). Then T (x) = w, so T (x)− w = 0. Since T (v) = w, we
have T (x) − T (v) = T (x − v) = 0. Thus x − v ∈ ker(T ), so x = v + (x − v) ∈
v + ker(T ).

(⊃) Let x ∈ v + ker(T ). Then x = v + y, where y ∈ ker(T ). Thus T (x) =
T (v + y) = T (v) + T (y) = w + 0 = w, so x ∈ T−1(w). �
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18. Sums and Scalar Products of Linear Transformations

Let S : Rn → Rm and T : Rn → Rm be linear transformations identical
domains and identical ranges. We define the sum of these linear transformations
to be the function S + T given by adding pointwise:

S + T : Rn → Rm given by (S + T )(v) = S(v) + T (v).

Proposition 15. Let S : Rn → Rm and T : Rn → Rm be linear transformations.
Then S + T : Rn → Rm is a linear transformation.

Proof. We verify properties (L1) and (L2).
(L1) Let v1, v2 ∈ Rn. Then

(S + T )(v1 + v2) = S(v1 + v2) + T (v1 + v2)

= S(v1) + S(v2) + T (v1) + T (v2)

= S(v1) + T (v1) + S(v2) + T (v2)

= (S + T )(v1) + (S + T )(v2).

(L2) Let v ∈ Rp and a ∈ R. Then

(S + T )(av) = S(av) + T (av)

= aS(v) + aT (v)

= a(S(v) + T (v))

= a(S + T )(v).

�

Let T : Rn → Rm be a linear transformation and let a ∈ R be a scalar. We
define the scalar product of b and T to be the function bT given by multiplying
pointwise:

bT : Rn → Rm given by (bT )(v) = bT (v).

Proposition 16. Let T : Rn → Rm be a linear transformations and let a ∈ R.
Then bT : Rn → Rm is a linear transformation.

Proof. We verify properties (L1) and (L2).
(L1) Let v1, v2 ∈ Rn. Then

bT (v1 + v2) = b(T (v1) + T (v2)) = bT (v1) + aT (v2).

(L2) Let v ∈ Rp and a ∈ R. Then

bT (av) = baT (v) = abT (v) = a(bT (v)).

�
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19. Compositions of Linear Transformations

Let S : Rp → Rn and T : Rn → Rm be linear transformations. The composi-
tion of S and T is the function

T ◦ S : Rp → Rm given by (T ◦ S)(v) = T (S(v)).

Then T ◦ S is actually a linear transformation.

Proposition 17. Let S : Rp → Rn and T : Rn → Rm be linear transformations.
Then T ◦ S : Rp → Rm is a linear transformation.

Proof. We verify properties (L1) and (L2).
(L1) Let v1, v2 ∈ Rp. Then

T (S(v1 + v2)) = T (S(v1) + S(v2)) = T (S(v1)) + T (S(v2)).

(L2) Let v ∈ Rp and a ∈ R. Then

T (S(av)) = T (aS(v)) = aT (S(v)).

�

The identity transformation on Rn is the function Jn = J : Rn → Rn which
sends every element to itself; that is, J(v) = v for all v ∈ Rn. This is clearly
linear.

Actually, given any arbitrary set A, we can define the identity function on it.
Let A be a set. The identity function on A is the function

idA : A → A given by idA(a) = a.

Let f : A → B be a function. We say that f is invertible if there exists a
function g : B → A such that g ◦ f = idA and f ◦ g = idB . The function g is
called the inverse of f , and is denoted by f−1.

Proposition 18. Let f : A → B. Then f is invertible if and only if f is
bijective.

Proof. To show an if and only if statement, we show implication in both direc-
tions.

(⇒) Suppose that f is invertible. Then there exists a function f−1 : B → A
such that f−1(f(a)) = a for every a ∈ A, and f(f−1(b)) = b for every b ∈ B.

We wish to show that f is injective and surjective.
To show injectivity, we select arbitrary elements of A which go to the same

place under f and show that they must have been the same element in the first
place.

Let a1, a2 ∈ A such that f(a1) = f(a2). Then f−1(f(a1)) = f−1(f(a2)), so
a1 = a2. Therefore f is injective.

To show surjectivity, we select an arbitrary element of B and find an element
a ∈ A such that f(a) = b.

Let b ∈ B. Let a = f−1(b). Then f(a) = f(f−1(b)) = b. Therefore f is
surjective.

(⇐) Suppose that f is bijective. The for every b ∈ B there exists a unique
element a ∈ A such that f(a) = b. Define f−1 : B → A by f−1(b) = a. Clearly
f−1 is the inverse of f . �
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A linear transformation T : Rn → Rm is called invertible if it is invertible
as a function. If T is invertible, we have a function S : Rm → Rn such that
T ◦ S = Jm and S ◦ T = Jn. We will see that this implies that m must equal n.
For now, we content ourselves to be reassured that if T is invertible, its inverse
is also linear.

Proposition 19. Let T : Rn → Rm be a bijective linear transformation and let
S : Rm → Rn be its inverse. Then S is a linear transformation.

Proof. We verify properties (L1) and (L2).
(L1) Let w1, w2 ∈ Rm. Since T is surjective, there exist v1, v2 ∈ Rn such that

T (v1) = w1 and T (v2) = w2. Then S(w1) = v1 and S(w2) = v2.
Now w1 + w2 = T (v1) + T (v2) = T (v1 + v2), so S(w1 + w2) = v1 + v2 =

S(w1) + S(w2).
(L2) Let w ∈ Rm and a ∈ R. There exists v ∈ Rn such that T (v) = w. Then

S(w) = v.
Now T (av) = aT (v) = aw, so S(aw) = av = aS(v). �
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